SEMIPARAMETRIC ESTIMATORS IN COMPETING RISKS REGRESSION by
نویسنده
چکیده
منابع مشابه
Analysis of a semiparametric mixture model for competing risks
Semiparametric mixture regression models have recently been proposed to model competing risks data in survival analysis. In particular, Ng and McLachlan (Stat Med 22:1097–1111, 2003) and Escarela and Bowater (Commun Stat Theory Methods 37:277–293, 2008) have investigated the computational issues associated with the nonparametric maximum likelihood estimation method in a multinomial logistic/pro...
متن کاملParametric Estimation in a Recurrent Competing Risks Model
A resource-efficient approach to making inferences about the distributional properties of the failure times in a competing risks setting is presented. Efficiency is gained by observing recurrences of the compet- ing risks over a random monitoring period. The resulting model is called the recurrent competing risks model (RCRM) and is coupled with two repair strategies whenever the system fails. ...
متن کاملGeneralized Ridge Regression Estimator in Semiparametric Regression Models
In the context of ridge regression, the estimation of ridge (shrinkage) parameter plays an important role in analyzing data. Many efforts have been put to develop skills and methods of computing shrinkage estimators for different full-parametric ridge regression approaches, using eigenvalues. However, the estimation of shrinkage parameter is neglected for semiparametric regression models. The m...
متن کاملSemiparametric analysis of mixture regression models with competing risks data.
In the analysis of competing risks data, cumulative incidence function is a useful summary of the overall crude risk for a failure type of interest. Mixture regression modeling has served as a natural approach to performing covariate analysis based on this quantity. However, existing mixture regression methods with competing risks data either impose parametric assumptions on the conditional ris...
متن کاملSemiparametric Additive Risks Regression for Two-stage Design Survival Studies.
In this article we study a semiparametric additive risks model (McKeague and Sasieni (1994)) for two-stage design survival data where accurate information is available only on second stage subjects, a subset of the first stage study. We derive two-stage estimators by combining data from both stages. Large sample inferences are developed. As a by-product, we also obtain asymptotic properties of ...
متن کامل